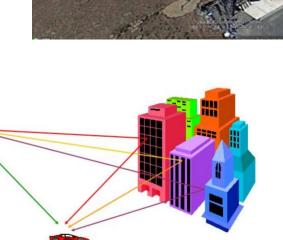

Using Drones to Enhance Spectrum Measurements

<u>Tom.Brinkoetter@RadioSiteTest.com</u> (408) 592 3759


Agenda

- Why Elevate Spectrum Measurements
- FAA Rules / Limitations
- Hardware Overview
- Example Solutions
- New Drone / Spectrum Analyzer Systems
- Logistics
- "Before Drones"
- Summary

Why Elevate Spectrum Measurements

- "See what your Antenna Sees"
 - Rx at 150 ft. No interference on the ground
- Line-of-Site to source
- Measure signal strength in hard-toaccess source locations
- RF Environment on ground compromised
 - Inverter Noise
 - AC Noise
 - Cell Phone Signals
- Eliminate Multipath errors

See What Your "Antenna" Sees

- Most Communications today" Line-of-Sight"
- Path loss well known
 - Friis's Equation

$$rac{P_r}{P_t} = D_t D_r igg(rac{\lambda}{4\pi d}igg)^2$$

where

- ullet D_t is the directivity of the transmitting antenna
- D_r is the directivity of the receiving antenna
- \(\lambda \) is the signal wavelength
- d is the distance between the antennas
- Spot Check Coverage Predictions
- For EMF studies complicated by multiple emitters over a wide frequency range and multiple source location.
- "Get in the RF path" to needed locations

FAA Rules / Limitations

- Drone activity regulated by FAA
- 107 Licensed pilot
- Pilot in command (PIC) totally responsible for all outcomes
- Not over people
- Approved airspace LAANC

Hardware Overview (payload drones)

- US Manufacturers
 - \$25K vs \$15K

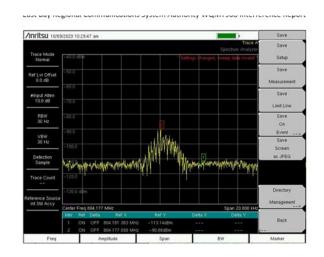
- Freefly AltaX
- Wispr drones
- Xcraft
- •

- China DJI
 - \$8 to \$30K

Hardware Overview

 Safe modifications of aircraft for test electronics

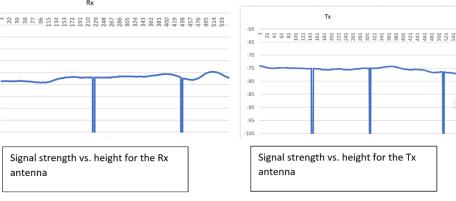
- PC
- Antenna
- Misc. Filters


Example

N California Interference

- **Consulting Engineers**
- FCC

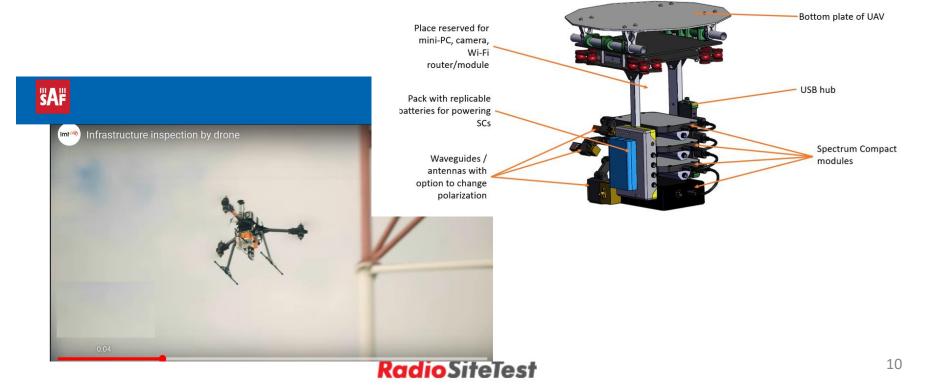
- CSI Telecommunications
 Into RX Antenna at 150 ft
 - No Signal on Ground
 - Needed bearing from 150 ft



Example

N California PD Antenna Study

- Poor Coverage at Station from 50
 W Transmitter 5 miles away
- Separate Rx and Tx Antennas on Cell Tower
- Drone RSSI Measurements showed Antenna Patterns were good but RX Side Mounting Reduced Rx by 5 dB
- Reversed Tx and Rx antennas.
 Other Rx Receivers Voted Systen



Drone / Spectrum Analyzer Systems

- Microwave / mm Wave
 - SAF Technika
 - 9 kHz to 50 GHz

Drone / Spectrum Analyzer Systems

Cellular RF Signal Survey

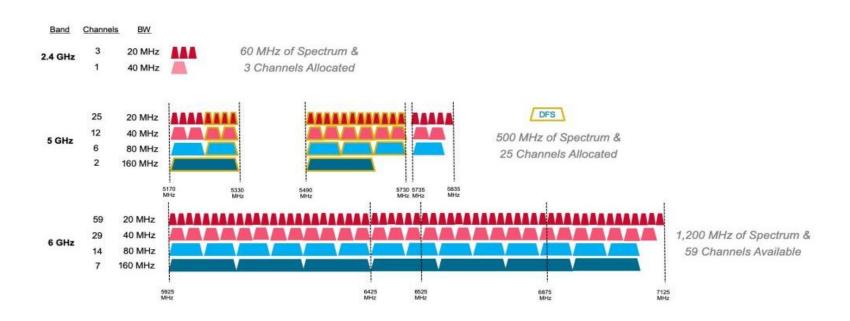
- Prism
- Wispr Drone (US)

- EpicSolutions (Prism)
 - Scanner / spectrum analyzer

The PRiSM™ Sensor

The PRiSM sensor is a pocket-sized accessory based on our smallest RF transceiver/processor, the <u>Sidekiq Z2</u>. It connects to a commercial smartphone or tablet via USB-C, making a conveniently transportable, complete cellular network scanner and spectrum analyzer. <u>Learn More</u>

Cellular RF Signal Survey



WiFi 6E Interference Hunting

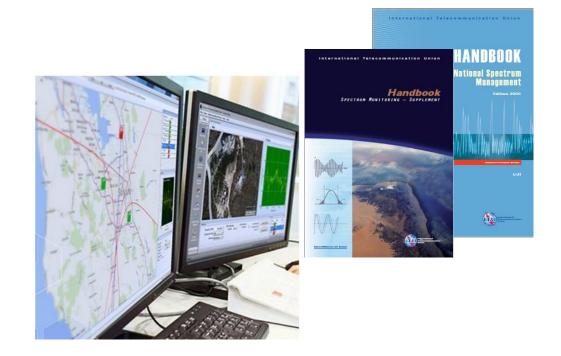
 WiFi 6E is an extension of the available frequencies that can be used to transmit WiFi signals

WiFi 6E Interference Hunting

- 10,000 Incumbent Fixed Wireless links
- Automated Frequency Coordination (AFC)
- WiFi 6E Access points will consult a registered database to confirm its operation will not impact a registered user.

WiFi 6E Interference Hunting

Aaronia / Spectran Real-Time Spectrum Analyzer



Government Level Spectrum Monitoring and Management

Tethered Drone System

Government Level Spectrum Monitoring and Management

Extra resource for mobile System

Wildlife Tracking

Wildlife Tracking

- DJI M300
- Signal Hound SA44
- 15 Tablet PC
- 3 Element 220 MHz
 Yagi antenna

Isotropic EMF Surveys

Isotropic EMF Surveys

 Measurement in path of radiation to predict levels in difficult to access areas

Flight Logistics

- Landowner
- Airspace
 - FAA Approval if needed
 - LAANC
- Weather
- People Management

- Flights are typically straight up rotate and come back down
 - Little wind loading on antenna

"Before Drones"

Man Lift

Slow to move

Drone 400 ft +

Disturbance

Maned Aircraft

Expense

Cant hover

Risk

Antenna Mounting

Helicopter

Expense

Risk

Antenna Mounting

Summary

- Rapidly Expanding Applications and Solutions for Drone-based Spectrum Measurements
- Many New "Non Chinese" Drones
- Value of Elevating Spectrum Measurements Proven
- Questions?

